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It is known that stationary fluid with density that varies sinusoidally with small 
amplitude and wavenumber K in the vertical direction is unstable to disturbances that 
are sinusoidal in a horizontal direction with wavenumber a. Small values of E / K  are the 
most unstable in the sense that a neutral disturbance exists at sufficiently small CX/K 

however small the Rayleigh number may be. The non-uniformity of density in the 
undisturbed state may be regarded as being a consequence of non-uniformity of 
concentration of extremely small solid particles in fluid. This paper is concerned with 
the corresponding instability of such a non-uniform dispersion when the particle size 
is not so small that the fall speed relative to the fluid is negligible. In the undisturbed 
state, which is an outcome of the well-known primary instability of a uniform fluidized 
bed with particle volume fraction $", the sinusoidal distribution of concentration 
propagates vertically, and in the steady state relative to this kinematic wave particles 
fall with speed V (= I$ dU/d$l,& where U($) is the mean speed of fall of particles, 
relative to zero-volume-flux axes, in a uniform dispersion with volume fraction q5. This 
particle convection with speed V transports particle volume and momentum and tends 
to even out variations of a disturbance in the vertical direction and thereby to suppress 
a disturbance, especially one with small E / K .  Analysis of the behaviour of a disturbance 
is based on the equation of motion of the mixture of particles and fluid and an 
assumption that the disturbance velocities of the particles and the fluid are equal (as 
is suggested by the relatively small relaxation time of particles). The method of solution 
used in the associated pure-fluid problem is also applicable here, and values of the 
Rayleigh number as a function of E / K  for a neutral disturbance and a given value of 
the new non-dimensional parameter involving V are found. Particle convection with 
only modest values of I.' stabilizes all disturbances for which E / K  < 1 and increases 
significantly the Rayleigh number for a neutral disturbance when E / K  > 1. It appears 
that under practical conditions disturbances with E / K  above unity are unstable, 
although ignorance of the values of parameters characterizing a fluidized bed hinders 
quantitative conclusions. 

1. Introduction 
It is generally accepted that under certain conditions a statistically uniform fluidized 

bed of solid particles is unstable to small disturbances having the form of plane 
sinusoidal waves with horizontal wave fronts. The instability is caused essentially by 
inertia forces on the particles, as was first made clear by Jackson (1963). The physical 
factor or process that tends to suppress the disturbance and that yields a criterion for 
instability is less evident. The theoretical evidence points to a condition for instability 
of the form 
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particle Froude number 2 > critical value of order unity, 

where a is the radius of the (spherical) particles and U,, is the speed of fall of an isolated 
particle. If one is willing to assume a specific mechanism for suppression of the 
disturbance, in particular a particle stress related to the diffusive transport of particles 
down a concentration gradient (Batchelor 1988), the critical value of the Froude 
number may be found to a rough approximation. 

A nearly neutral wavy disturbance propagates vertically upwards with the kinematic 
wave speed 

relative to the particles, where U(g5) is the mean speed of fall of particles, relative to 
zero-volume-flux axes, in a homogeneous dispersion with particle volume fraction 4. 
At Froude numbers only a little above the critical value, the range of values of the 
vertical wavenumber ( K )  for which the growth rate of the disturbance is positive is given 
by 0 < K < K,, where K, is the wavenumber of a neutral disturbance; and the 
wavenumber for which the growth rate is a maximum is of the same order of magnitude 
as K,. 

Vertically propagating concentration waves which form spontaneously have been 
observed in liquid-fluidized beds, although only a few photographs have been 
published (see El-Kaissy & Homsy 1976; Didwania & Homsy 1981). Even rarer are 
pictures of growing waves in gas-fluidized beds, possibly because in gas-fluidized beds, 
which are known to be more unstable, disturbances grow very rapidly and quickly 
change form. Bubbles of relatively clear fluid are a prominent feature of both gas- 
fluidized beds used in industrial plants and those employed in the laboratory, and it is 
a common speculation (Didwania & Homsy 1981; Batchelor 1991) that they are a 
direct consequence of nonlinear processes in a growing concentration wave. 

In the latter of these two references I suggested that the transition from an (unstable) 
uniform fluidized bed to a bed containing steadily rising bubbles may be thought of 
as taking place in four stages: 

(i) plane concentration waves in a uniform bed grow exponentially in amplitude; 
(ii) the vertical gradients of mean density of the mixture of particles and fluid 

resulting from (i) become so large that a secondary overturning instability develops ; 
(iii) nonlinear processes then lead to the formation of compact regions of smaller- 

than-average concentration which rise and develop an internal circulation of fluid 
which expels the remaining particles by centrifugal action ; 

(iv) the rising bubble of almost clear fluid develops a steady shape and motion. 
Stage (i) has already been investigated in the references cited; the purpose of the 
present note is to examine stage (ii); stage (iii) is the subject of a separate paper 
(Batchelor & Nitsche 1994); and stage (iv) is a natural development which could 
perhaps be analysed using the available models of bubble motion in fluidized beds (see 
Davidson, Harrison & Guedes de Carvalho 1977). 

This, then, is the background to the following investigation of the secondary 
overturning instability of a fluidized bed through which a wave with a sinusoidal 
variation of mean density in the vertical direction is propagating with speed V. The 
fluidizing fluid is taken to be a gas, because bubble formation in this case is more 
common and the equations governing the two-phase flow are simpler when the fluid 
density is effectively zero. It will be assumed, for obvious reasons of mathematical 
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convenience, that the amplitude of the primary concentration wave is small and steady, 
and then if we chose axes moving with the wave the sinusoidal variation of mean 
density generated by the primary instability is stationary. It will also be assumed that 
the amplitude of the primary concentration wave is independent of height, even though 
in a practical situation in which the source of the disturbance is located at the base of 
the bed an unstable wave is like to grow exponentially with vertical distance rather than 
with time. This is the ‘undisturbed’ state whose stability will be investigated by 
superimposing a small disturbance which is sinusoidal with wavenumber a in an 
arbitrary horizontal direction. Note that relative to these axes the mean speed of fall 
of the particles is approximately constant and equal to V everywhere owing to the 
smallness of the variation of particle concentration in the undisturbed state. 

In addition to its relevance to the intriguing phenomenon of bubble formation in 
fluidized beds, the present investigation may have some interest as an addition to the 
rather small number of cases of two-phase flow which can be analysed without the need 
for arbitrary hypotheses concerning the equations governing the motion. 

It may be noted that another and less simple type of secondary instability of liquid- 
fluidized beds in which the transverse structure develops as a consequence of a weakly 
nonlinear resonant sideband instability of the primary concentration wave has been 
proposed by Didwania & Homsy (1982) and investigated quantitatively on the 
assumption that the particle phase behaves like a second fluid. 

2. Results concerning the instability of stationary fluid with a sinusoidal 
variation of density 

In the limit in which a + 0 without change of the particle density or the local particle 
volume fraction 4, there is no ‘slip’ of the particles relative to the fluid and the 
dispersion behaves dynamically like a fluid of non-uniform density. The stability of a 
stationary continuous fluid with a sinusoidal distribution of density in the vertical 
direction thus represents a limiting case of our two-phase flow problem, and is an 
interesting stability problem in its own right. This fluid-stability problem has been 
addressed in two recent papers, one (Batchelor & Nitsche 1991, referred to herein as 
BNl) in which the fluid is assumed to be unbounded, and the second (Batchelor & 
Nitsche 1993, referred to herein as BN2) in which the effect of a vertical cylindrical 
boundary is allowed for. It will be useful to recapitulate here the results of this 
investigation, because our approach to the related two-phase flow problem is 
essentially to modify appropriately the solution of the continuous-fluid flow problem. 

The linearized equations governing a disturbance to stationary fluid with density 
pl(z) solved in BN1 are 

v - u  = 0, (2.1) 
au 

po 7& = p’g - Vp‘ -k p v u ,  

aP’ dP - + w 3 = DV’p’, 
at  dz 

where u (components u, v, w) is the disturbance velocity and a prime to p or p indicates 
a disturbance quantity. The fluid density in the undisturbed state is 

po + p&) = po( 1 + A  sin KZ),  (2.4) 
where IA( 6 1, allowing use of the Boussinesq approximation. D is the diffusivity of 
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whatever physical property (e.g. solute concentration) is responsible for the variability 
of the fluid density. The dependent variables u, v, p',p' may be eliminated from (2. l), 
(2.2) and (2.3), giving 

g dP1 2 ---DV2 --vV2 V2w = --Vh W ,  
(:f )(:t ) po dz 

where v = p/p, and V i  denotes the Laplacian in the horizontal plane. 
The assumed form of the disturbance is 

w = eyt W(z) cos ax, 
whence (2.5) becomes 

where CI. is the wavenumber of the disturbance in an arbitrary horizontal direction. It 
will be seen later that the most unstable disturbances in the corresponding two-phase 
flow problem are those for which a / ~  is O(1) or larger. If now a vertical circular 
cylindrical rigid boundary with radius large compared with K - ~  (a condition that is 
normally satisfied) is present, the boundary may be expected to have little effect on 
these most unstable disturbances; and we shall therefore assume for simplicity that no 
boundary is present, either in the non-uniform fluid problem being described here or 
in the two-phase problem considered later. The only dimensionless parameters 
appearing in the fluid-instability problem are then 

A solution of (2.7) such that W(z) is a periodic function of z with period 2 n / ~  may 
be written as 

00 00 

W(z) = C F, sin ~ K Z  + C. G ,  cos IZKZ. (2.9) 
,=1 ,=O 

Substitution of (2.9) in (2.7), conversion of all terms to Fourier series, and the equation 
of coefficients yields two three-term recurrence relations, one for the coefficients 5 and 
one for the G,. It was found possible in BNl to solve these recurrence relations with 
high accuracy by truncating the two Fourier series in (2.9) after only a few terms. Many 
modes of disturbance exist, and the one for which the Rayleigh number R has the 
smallest value at given y and a / ~  is found to be an even function of z for which 

(2.10) 

(Sub-harmonic disturbances which are periodic in z with a period equal to an integral 
multiple of 2 n / ~  also exist, but were found to be less unstable than the synchronous 
mode described above.) 

The relation (2.10) shows the remarkable result that for any R > 0 there is a range 
of values of a/. bounded above for which y > 0. For an even neutral disturbance 
(y = 0) (2.10) reduces to 

(2.1 1) 
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which is shown graphically as the curve labelled J = 0 in the later figure 1. The 
asymptotic form of (2.1 1) is 

R N .\/2a/~ as a / K - + O ,  

showing that unstable disturbances exist for small values of Z / K ,  however small the 
Rayleigh number, although the growth rate goes to zero with R. A sinusoidal density 
distribution in continuous fluid is evidently always unstable. Of course, the presence of 
a circular cylindrical boundary with radius b would affect the behaviour of disturbances 
with values of cc comparable with b-l or smaller (BN2); but we are ignoring boundary 
effects in this resume of results for pure-fluid instability. 

It will help, in our later consideration of the corresponding problem for a dispersion 
of particles, to have a picture of the way in which disturbances with large horizontal 
wavelength efficiently convert potential energy to kinetic energy. Figure 6 in BN1 
shows the sense of vertical and horizontal components of velocity in the neutral even- 
mode disturbance represented by (2.1 1) when a / K  = 0.1, and indicates a tilting of the 
layers of smaller and larger density accompanied by a sliding of these layers alternately 
up and down and accumulation of lighter and heavier fluid in alternate vertical 
columns, thereby reinforcing the initial tilting. 

3. Equations governing the instability of a particle dispersion with a steady 
sinusoidal variation of concentration 

We try now to make a similar calculation of instability of a two-phase medium 
consisting of sedimenting rigid particles of density p p  dispersed in a fluid of much 
smaller density. The mean density of this two-phase medium in the undisturbed state 
is assumed to be 

(3.1) 

and if we write p p  #o = po (3.1) is identical with (2.4). The distribution of mean density 
in the undisturbed state is steady relative to axes moving with the concentration wave, 
as explained in $ 1 ,  and particles are falling through the wave with approximately 
uniform mean speed equal to V (see (1.1)). If the particle radius is very small this ‘slip ’ 
velocity is effectively zero and the mixture behaves like a continuous fluid. We need to 
consider the consequences of this slip velocity not being zero. 

For this purpose we introduce the equation of motion of the mixture (a procedure 
that has not often been exploited in past work on two-phase flow). The mixture is a 
mobile continuum, and if we assume for convenience that the fluctuations in particle 
velocity are isotropic the equation of motion of the mixture is of Navier-Stokes form. 
Let up denote the mean disturbance velocity of the particles and urn that of the mixture 
(urn being defined as the ensemble average of the velocity at a point regardless of 
whether the point lies instantaneously in a particle or in the fluid). The two constituents 
of the mixture are volume preserving, so 

P p W 0  + A(z>> = P p  #o(l + A  sin 4, 

v*u, = 0. (3.2) 

The components of particle velocity in the undisturbed state are (O,O, - V) .  The 
particle mass per unit volume multiplied by the mean acceleration of the particles in 
the disturbed state is thus 
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correct to first order in disturbance quantities. There is a similar contribution to the 
inertia force on the mixture from the (gaseous) fluid, but it is negligible. The linearized 
equation of motion of the mixture then has the form 

po 3 - v p  = plg - Vp’ +,urn V 2 U m ,  
( a t  t) (3.3) 

where p’( = p p  4’) and p‘ are the density and pressure perturbations for the mixture. By 
the term ‘pressure’ we mean simply (-+) times the ensemble average of the trace of the 
stress tensor at a point in the mixture regardless of whether the point lies in a particle 
or in the fluid. 

The coefficient ,urn is the effective viscosity of the mixture. Note that ,urn includes the 
transport of momentum by particles with random velocities and so may be much larger 
in magnitude than the fluid viscosity y. 

Similarly we have for the (linearized) equation expressing conservation of particles : 

where w p  is the upward vertical component of up and D ,  is the particle diffusivity, 
again not simply a molecular transport but including transport due to the fluctuations 
in the particle velocity. Equation (3.4) is brought nearer to (2.3) if we replace 
P p  $0, p p  $1, P p  $’ by Po, p1, p’ respectively; thus 

(3.5) 

(3.6) dP1 where, according to (3.1), ~ = /I0 A K C O S  KZ. 
dz 

It may now be seen that the equations (3.2), (3.3) and (3.5) governing the behaviour 
of a small disturbance to a steady sinusoidal distribution of particle concentration are 
broadly similar, although not identical, to the equations (2.1), (2.2) and (2.3) governing 
a disturbance to a steady sinusoidal distribution of density of stationary fluid. The 
differences are : 

(i) the molecular transport coefficients y and D appearing in (2.2) and (2.3) are 
replaced by the effective values pLm and D ,  appropriate to a particle dispersion; 

(ii) the time derivative a/at  appearing in (2.2) and (2.3) is replaced by 

in (3.3) and (3.5); 
(iii) the fluid velocity u appearing in (2.1), (2.2) and (2.3) is replaced in some of the 

terms in (3.2), (3.3) and (3.5) by the mean mixture disturbance velocity urn and in other 
terms by the mean particle disturbance velocity up. 

The change in the numerical values of the transport coefficients, (i) above, causes no 
problems. 

Likewise the introduction of the convective rate of change, (ii) above, will be found 
to raise no mathematical problems which cannot be overcome. The sketch of the 
disturbance motion for a stationary stratified fluid in figure 6 in BN1 helps to make 
clear the consequences of a convective rate of change with the mean (vertical) particle 
velocity - V when C L / K  = 0.1. The particles are falling relative to the undisturbed 
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concentration wave and carry both horizontal particle momentum and particle volume 
across the layers of positive and negative excess particle concentration. This transfer 
process obviously tends to suppress vertical variations of horizontal particle 
momentum and concentration, especially for the disturbances of large horizontal 
wavelength which are amplified by the tilting-sliding mechanism in the case a+O 
(because for these large horizontal wavelengths the vertical gradients of the horizontal 
component of the disturbance velocity are much greater than those of the vertical 
component). I believe this vertical transfer process to be the primary effect of the 
presence of the discrete particles. It will be analysed mathematically in the next section. 

The change (iii) however is awkward in that it introduces an additional dependent 
variable, namely up,  and in principle the set of equations (3.2), (3.3) and (3.5) must be 
supplemented by an additional (vector) equation, presumably the equation of motion 
of the particles alone or of the fluid alone, the mean velocities at a point being related 
by 

If there is negligible slip between the two constituents as a consequence of the particle 
radius being very small, we have 

u, = $U,+(l  -$)uf. (3.8) 

v = 0, u, = up = Uf, (3.9) 

and the equations (3.2), (3.3) and (3.5) are then identical in form to (2.1), (2.2) and 
(2.3). But if a + 0, then V =# 0 and u, is not necessarily equal to up.  

The hypothesis to be made here is that there is no slip in the disturbance motion, so 
that u, = up,  even when a + 0. This is valid for sufficiently small a, and we may 
estimate the implied restriction on the value of a by comparing the particle relaxation 
time with the time :A/ V (where A = ~ R / K )  taken by a particle to fall with mean speed 
V through one of the concentration layers of thickness :A (the ‘traverse time’). The 
relaxation time is defined as the e-folding time of the relative velocity of fluid and 
particles on which no forces other than fluid resistance are acting. The relaxation time 
is usually defined for an isolated particle of mass m, in which case it may be denoted 
by 7,, and is equal to m/67ca,u (assuming low-Reynolds-number flow around the 
particle). Here we are concerned with a homogeneous dispersion of particles of 
(approximately) uniform mean concentration $o with uniform mean particle velocity, 
and since the mean fall speed (relative to zero-volume-flux axes) of particles in such a 
dispersion due to the uniform gravitational force rng is U($o), the ‘collective’ 
relaxation time is 

Hence we have 

particle relaxation time (7,) - 2U($,) V - 
particle traverse time &? 

(3.10) 

(3.11) 

where U, is the speed of fall of an isolated particle. 
The ratio (3.1 I ) ,  which must be small for our hypothesis to be justified, is the product 

of a Froude number based on half the vertical wavelength of the undisturbed mean 
density distribution and a numerical factor determined by the dependence of the mean 
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fall speed in a homogeneous dispersion on concentration. The second of these factors 
in particular may be significantly smaller than unity for practical particle sizes and 
concentrations. For instance, for particles of density 1 gm cm-3 and radius 50 pm in 
air, the Froude number 2Ui/hg is about unity when h = 2 cm; and use of the 
Richardson-Zaki correlation, namely 

(3.12) 

where p ranges between 2.5 and 5.5 depending on the flow Reynolds number and is 
taken as 4.0 here for illustration, shows that the numerical factor is about 0.05 when 
g50 = 0.40. Bearing in mind that U i  is proportional to a4, it is evident that the ratio 
(3.1 1) may be quite small for particle radii of the order of 100 pm or less. In these 
circumstances the difference between the disturbance particle and fluid velocities is 
small, and the hypothesis that 

u, = up 

has some justification. In the next section we consider its consequences. 

4. The instability of a sinusoidally stratified particle dispersion 
With this hypothesis the equations (3.2), (3.3) and (3.5) governing a disturbance to 

a particle dispersion with a steady sinusoidal variation of concentration now coincide 
with (2. l), (2.2) and (2.3), provided that u, ,u, D and a/& in these latter equations are 
replaced by u,, ,urn, D ,  and the operator (3.7) respectively. Just as u, u, p' and p' may 
be eliminated from (2.1), (2.2) and (2.3) to give (2.5), so an equation in the single 
dependent variable w, may be obtained from (3.2), (3.3) and (3.5). Then, on assuming 
a disturbance of the form 

we have, in place of (2.7), 
w, = eyt W,(z) cos ax, (4.1) 

= o?K~RCOSKZW~ (4.2) 
in view of (3.1), where v, = ,um/po and 

We may now use the same mathematical procedure for the solving of equation (4.2) 
as was employed in BN1 on equation (2.7). It is assumed that the dependent variable 
W, is a periodic function of z with period 2 n / ~  and so may be written as a Fourier series 
like (2.9) which is substituted in (4.2). On converting all terms in (4.2) to Fourier series 
and equating coefficients of like terms we obtain a three-term recurrence relation. As 
a consequence of the appearance of odd-order derivatives with respect to z in (4.2), the 
sine and cosine terms in the Fourier series are now not independent. 

Proceeding on the assumption that the Fourier coefficients F, and G ,  decrease 
rapidly as n increases-which is suggested by inspection and can be confirmed a 
posteriori - we truncate the Fourier series at n = 2. The condition for non-zero Fourier 
coefficients to exist is then 
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a2 inV where 
K2 KVm 

and (4.6) 

The amplitude of the complex quantity L, increases rapidly with n, and it appears 
that the smallest root of (4.4) for S for given y (this being the root of greatest physical 
interest) is such that 

in which event the approximate solution of (4.4) is 
s2 < ILl LZI, IL-l L-21, 

(4.7) 

If V =  0, corresponding to the case of a continuous fluid of non-uniform density 
considered in BN1, L,  is real and L, = L-, so (4.7) reduces to 

s2 = ;Lo L,, (4.8) 
which is identical with the first of the two relations in (5.15) of BN1 as expected. (Note 
that as defined here L, is K - ~  times the definition adopted in BN1.) If V $. 0, (4.7) 
involves the additional dimensionless parameter 

V 
K ( D ~  v,);' 

J =  (4.9) 

Equation (4.7) is a sixth-order algebraic equation for y as a function of 
R , ~ / K , P ( =  v m / D p )  and J which needs to be solved numerically. However, the 
condition for a disturbance to be neutrally stable (7 = 0) can be found analytically to 
be 

(4.10) 

where p = (a2 + K ' ) / K ~ ,  

Note again that when J = 0 this reduces to the first of the two relations (5.16) in BN1. 
Thus (4.10) shows the effect of the fall of particles through the concentration wave on 
the smallest value of R consistent with the disturbance being neutrally stable, for given 

Figure 1 shows R as a function of OI /K  for various values of J for the case 
P = 1, y = 0, according to (4.10). The tendency for the falling of the particles to suppress 
the growth of a disturbance is strongest at CC/K 4 1 and weakest at CL/K %- 1, as we 
expected. All the curves in figure 1 asymptote to the curve for J = 0 as a / ~ +  co, and 
become indistinguishable from it at a value of a/. that increases with J. The curve for 
J = 0 itself has a simple asymptotic form (see (2.1 l)), and 

R,,, - 2 / 2 ( a / ~ ) ~  for OI /K  %- 1 (4.1 1) 

for any value of J. All the curves except those for J < 1 have a vertical tangent at a 
value of a/. that decreases as J decreases to unity. We see from (4.10) that a necessary 
condition for a neutral disturbance to exist is p > J, that is, 

a 2 / ~ '  > J- 1, (4.12) 

U / K .  
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y=  0, P = 1 

1.01 5 

-1 L 

FIGURE 1. The Rayleigh number R as a function of horizontal wavenumber cc for a neutral 
disturbance to a steady sinusoidally stratified particle dispersion for various values of the parameter 
J representing the effect of the fall of particles relative to the concentration wave; P( = v,/D,) = 1. 

showing that when J > 1 there are values of CL/K with the upper bound ( J -  1); for 
which the falling particles suppress the growth of a disturbance entirely. 

The minimum value of Ry-, with respect to a/. for given J remains at C I / K  = 0 when 
J < 1, and moves to a non-zero value of CL/K which increases as J increases above unity. 
Quantitatively, the value of a/. at which R,,, is a minimum for given J( 3 1) is roughly 
equal to the value of C I / K  at which the appropriate curve in figure 1 develops a vertical 
tangent, that is, 

R , = ~  is minimum at U / K  = (J- 1);. (4.13) 
Moreover, the value of that minimum of R =, is roughly equal to the value given by 
the curve for J = 0 in figure 1 at C I / K  = ( J -  1)’ a, that is, since the curve for J = 0 is given 

(4.14) 
by (2.1 1 1 7  

Similar approximate results for the conditions for maximum growth rate of a 
disturbance could be obtained. 

The value J =  1 is thus critical, in the sense that when J <  1 a disturbance of 
sufficiently small horizontal wavenumber is neutrally stable, however small the 
Rayleigh number may be, just as in the case J = 0, but when J > 1 disturbances with 
small wavenumber are stable. We conclude the paper by estimating typical values of 
J in practice. 

z 4 2 J : ( J -  1);. 
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5. Typical numerical values of the parameter J 
J has been defined in (4.9) as 

J = V/K(DP ,,)a, 

where (see (1.1)) and v, =- P m  v =  $4- I P p  $0. 

Here U(4) is the mean fall velocity of particles (relative to zero-volume-flux axes) in a 
homogeneous dispersion with particle volume fraction $4. Accepted values of the 
transport coefficients D, and ,urn associated with the random fluctuations of particle 
velocity are not available, either from theory or from observation, and the best we can 
do is to use a dimensional argument based on the simple postulate that the relevant 
properties of the dispersion are the particle radius a, the mean particle fall velocity 
U($40), and the mean density of the dispersion p, The kinematic coefficients D, and 
u, are then functions of a and U of the form 

D ,  = t a u ,  v, = yaU, (5.1) 

where the numbers 6 and 7 are of order unity and may depend on $40. (Note that the 
molecular contributions to D, and v, should be included in any consideration of what 
happens when a -+ 0.) The parameter J thus becomes 

and if we represent U(9) by the Richardson-Zaki correlation (3.12) J may be written 
as 

where p varies from about 2.5 at high particle Reynolds number to about 5.5 at small 
Reynolds number. The primary instability of a gas-fluidized bed is likely to occur, as 
the bed is expanded, at fairly large particle volume fractions 

It thus appears that J is of the same order of magnitude as (Ka)-l, where K is the 
vertical wavenumber of the steady wavy disturbance generated by the primary 
instability of the uniform fluidized bed. Theory that assumes a specific mechanism for 
the suppression of a disturbance (Batchelor 1988) suggests values of (.a)-' above unity 
for nearly neutral disturbances. Observational evidence of the value of (Ka)-l for gas- 
fluidized beds seems not to be available, perhaps because under common practical 
conditions the disturbances grow rapidly and quickly lose their periodic structure. The 
primary instability of a liquid-fluidized bed is weaker, and there is more direct evidence 
of the existence of growing plane wavy disturbances. Didwania & Homsy (1981) show 
photographs of plane waves propagating vertically and growing slowly in amplitude, 
and a representative value of (Ka)-l for these waves is about 40 (see their tables 1 and 
4). It would be surprising if the value of (KU)-' for a gas-fluidized bed (to which our 
two-phase flow analysis applies) were not also large compared with unity. 

If, as is suggested by this discussion, the value of J exceeds unity, the estimates (4.13) 
and (4.14) of the critical conditions for the secondary instability are applicable. 
Disturbances grow only if the horizontal wavenumber OI /K  exceeds ( J -  l)s, and the 
value of a / ~  at which RyZO is minimum is roughly the same. The value of that minimum 

around 0.4 or 0.5. 
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Rayleigh number - an important quantity which is the main end product of our 
investigation - is given by (4.14), whence 

i K ~ D ~  v, 
g 

(Ay=,Jmin w 4 2 J $ ( J -  1)~- (5.3) 

in view of the definition of R in (4.3). With use of the relations (5.1) this estimate of 
the minimum amplitude of the sinusoidal concentration wave for marginal secondary 
instability becomes 

(Ay-O)min = 4 2 J i ( J -  l)i[5r(~u)3-. U 2  
ag 

(5.4) 

If now we (a) use the Richardson-Zaki correlation to replace U($)/U,, by (1 - $ ) p ,  (b) 
replace J by ( K U ) - ~  times a factor of order unity (see above), and (c) ignore factors of 
order unity, we find 

Remember that this estimate is applicable only when J > 1, which is expected to be 
satisfied normally. 

If the right-hand side of (5.5) is small compared with unity, the secondary instability 
always exists; if it is large compared with unity the secondary instability never exists; 
and if it is of order unity, there may be secondary instability at some value of A( < 1). 
The factors KU and (1  -q5,JZp are appreciably smaller than unity and Ui/ug is 
appreciably larger, which leaves the magnitude of the product in (5.5) uncertain. 
Bearing in mind also the dropping of factors of order unity in the representation of 
J,  D,  and v, it is impossible to say on apriori grounds whether the quantity (5.5) is 
larger or smaller than unity in a specific case. But since U: varies as u4 for small particle 
Reynolds number and as a lesser positive power for large Reynolds number, it is 
evident that change of a with q50 fixed has a very strong influence on the value of the 
right-hand side of (5.5) and that almost any desired value can be realized by the 
appropriate choice of the value of a. In other words, the condition for secondary 
instability is satisfied for sufficiently small particles, provided that a remains sufficiently 
large for satisfaction of the condition for primary instability of the fluidized bed. It is 
intriguing that large values of a favour the primary instability whereas small values of 
a favour the secondary instability. 

The horizontal wavenumber of the disturbance that is neutrally stable at the smallest 
value of the primary-wave amplitude A is given (see (4.13)) by 

when J % 1.  Thus the horizontal lengthscale is of the order of ( u / K ) ~  which is smaller 
than the vertical lengthscale by the factor (KU);. This horizontal lengthscale presumably 
determines the size of buoyant blobs (which become bubbles according to the 
suggestions made in Batchelor 1991) resulting from the growth and ultimate breakup 
of secondary disturbances. Note that the direction of the wavenumber a in the 
horizontal plane is arbitrary, and that the breakup of the growing secondary 
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disturbance may therefore be expected to yield compact three-dimensional structures 
even though a single Fourier component with horizontal wavenumber yields a two- 
dimensional flow. 

It is disappointing not to be able to make more definite quantitative predictions 
about the secondary instability of a fluidized bed. The problem here is, unusually, not 
the analysis of the two-phase flow but lies more in our ignorance of the values of 
parameters representing basic physical properties of a fluidized bed, such as the 
effective viscosity and particle diffusivity. 

I am grateful to Dr Johannes Nitsche (Department of Chemical Engineering, 
SUNY, Buffalo) for carrying out the computations represented by figure 1. Financial 
support for travel from NATO Collaborative Research Grant no. 900458 is also 
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